
vg Documentation

Metabolize

Jan 22, 2020

Contents

1 Motivation 3

2 Functions 5

3 Constants 13

4 Style guide 15

5 Design principles 17

6 Versioning 19

Python Module Index 21

Index 23

i

ii

vg Documentation

vg is a very good vector-geometry and linear-algebra toolbelt.

Contents 1

vg Documentation

2 Contents

CHAPTER 1

Motivation

Linear algebra provides a powerful toolset for a wide range of problems, including geometric problems, which are the
focus of this library. Though some programmers need to know the math that powers these solutions, often understand-
ing the abstractions is enough. Furthermore, the abstractions express these operations in highly readable forms which
clearly communicate the programmer’s intention, regardless of the reader’s math background.

The goal of vg is to help Python programmers leverage the power of linear algebra to carry out vector-geometry
operations. It produces code which is easy to write, understand, and maintain.

NumPy is powerful – and also worth learning! However it’s easy to get slowed down by technical concerns like
broadcasting and indexing, even when working on basic geometric operations. vg is friendlier: it’s NumPy for humans.
It checks that your inputs are structured correctly for the narrower use case of 3D geometry, and then it “just works.”
For example, vg.euclidean_distance() is invoked the same for two stacks of points, a stack and a point, or a
simple pair of points.

In the name of readability, efficiency is not compromised. You’ll find these operations as suited to production code as
one-off scripts. If you find anything is dramatically slower than a lower-level equivalent, please let us know so we can
fix it!

3

https://www.numpy.org/

vg Documentation

4 Chapter 1. Motivation

CHAPTER 2

Functions

All functions are optionally vectorized, meaning they accept single inputs and stacks of inputs interchangeably. They
return The Right Thing – a single result or a stack of results – without the need to reshape inputs or outputs. With the
power of NumPy, the vectorized functions are fast.

vg.normalize(vector)
Return the vector, normalized.

If vector is 2d, treats it as stacked vectors, and normalizes each one.

vg.perpendicular(v1, v2, normalized=True)
Given two noncollinear vectors, return a vector perpendicular to both.

Result vectors follow the right-hand rule. When the right index finger points along v1 and the right middle finger
along v2, the right thumb points along the result.

When one or both sets of inputs is stacked, compute the perpendicular vectors elementwise, returning a stacked
result. (e.g. when v1 and v2 are both stacked, result[k] is perpendicular to v1[k] and v2[k].)

Parameters

• v1 (np.arraylike) – A 3x1 vector or a kx3 stack of vectors.

• v2 (np.arraylike) – A 3x1 vector or a ‘kx3 stack of vectors. If stacked, the shape must
be the same as v1.

• normalized (bool) – When True, the result vector is guaranteed to be unit length.

Returns An array with the same shape as v1 and v2.

Return type np.arraylike

See also:

• https://en.wikipedia.org/wiki/Cross_product#Definition

• https://commons.wikimedia.org/wiki/File:Right_hand_rule_cross_product.svg

5

https://en.wikipedia.org/wiki/Cross_product#Definition
https://commons.wikimedia.org/wiki/File:Right_hand_rule_cross_product.svg

vg Documentation

vg.project(vector, onto)
Compute the vector projection of vector onto the vector onto.

onto need not be normalized.

vg.scalar_projection(vector, onto)
Compute the scalar projection of vector onto the vector onto.

onto need not be normalized.

vg.reject(vector, from_v)
Compute the vector rejection of vector from from_v – i.e. the vector component of vector perpendicular to
from_v.

from_v need not be normalized.

vg.reject_axis(vector, axis, squash=False)
Compute the vector component of vector perpendicular to the basis vector specified by axis. 0 means x, 1 means
y, 2 means z.

In other words, return a copy of vector that zeros the axis component.

When squash is True, instead of zeroing the component, it drops it, so an input vector (in R3) is mapped to a
point in R2.

(N.B. Don’t be misled: this meaning of axis is pretty different from the typical meaning in numpy.)

vg.magnitude(vector)
Compute the magnitude of vector. For stacked inputs, compute the magnitude of each one.

Parameters vector (np.arraylike) – A 3x1 vector or a kx3 stack of vectors.

Returns

For 3x1 inputs, a float with the magnitude. For kx1 inputs, a kx1 array.

Return type object

vg.euclidean_distance(v1, v2)
Compute Euclidean distance, which is the distance between two points in a straight line. This can be done
individually by passing in single point for either or both arguments, or pairwise by passing in stacks of points.

Parameters

• v1 (np.arraylike) – A 3x1 vector or a kx3 stack of vectors.

• v2 (np.arraylike) – A 3x1 vector or a kx3 stack of vectors. If stacks are provided for
both v1 and v2 they must have the same shape.

Returns

When both inputs are 3x1, a float with the distance. Otherwise a kx1 array.

Return type object

vg.angle(v1, v2, look=None, assume_normalized=False, units=’deg’)
Compute the unsigned angle between two vectors. For stacked inputs, the angle is computed pairwise.

When look is provided, the angle is computed in that viewing plane (look is the normal). Otherwise the angle is
computed in 3-space.

Parameters

• v1 (np.arraylike) – A 3x1 vector or a kx3 stack of vectors.

• v2 (np.arraylike) – A vector or stack of vectors with the same shape as v1.

6 Chapter 2. Functions

vg Documentation

• look (np.arraylike) – A 3x1 vector specifying the normal of a viewing plane, or None
to compute the angle in 3-space.

• assume_normalized (bool) – When True, assume the input vectors are unit length.
This improves performance, however when the inputs are not normalized, setting this will
cause an incorrect results.

• units (str) – ‘deg’ to return degrees or ‘rad’ to return radians.

Returns

For 3x1 inputs, a float with the angle. For kx1 inputs, a kx1 array.

Return type object

vg.signed_angle(v1, v2, look, units=’deg’)
Compute the signed angle between two vectors. For stacked inputs, the angle is computed pairwise.

Results are in the range -180 and 180 (or -math.pi and math.pi). A positive number indicates a clockwise sweep
from v1 to v2. A negative number is counterclockwise.

Parameters

• v1 (np.arraylike) – A 3x1 vector or a kx3 stack of vectors.

• v2 (np.arraylike) – A vector or stack of vectors with the same shape as v1.

• look (np.arraylike) – A 3x1 vector specifying the normal of the viewing plane.

• units (str) – ‘deg’ to return degrees or ‘rad’ to return radians.

Returns

For 3x1 inputs, a float with the angle. For kx1 inputs, a kx1 array.

Return type object

vg.rotate(vector, around_axis, angle, units=’deg’, assume_normalized=False)
Rotate a point or vector around a given axis. The direction of rotation around around_axis is determined by the
right-hand rule.

Parameters

• vector (np.arraylike) – A 3x1 vector or a kx3 stack of vectors.

• around_axis (np.arraylike) – A 3x1 vector specifying the axis of rotation.

• assume_normalized (bool) – When True, assume around_axis is unit length. This
improves performance marginally, however when the inputs are not normalized, setting this
will cause an incorrect results.

• units (str) – ‘deg’ to specify angle in degrees or ‘rad’ to specify radians.

Returns

The transformed point or points. This has the same shape as vector.

Return type np.arraylike

See also:

• https://en.wikipedia.org/wiki/Cross_product#Definition

• https://commons.wikimedia.org/wiki/File:Right_hand_rule_cross_product.svg

vg.scale_factor(v1, v2)
Given two parallel vectors, compute the scale factor k such that k * v1 is approximately equal to v2.

7

https://en.wikipedia.org/wiki/Cross_product#Definition
https://commons.wikimedia.org/wiki/File:Right_hand_rule_cross_product.svg

vg Documentation

Parameters

• v1 (np.arraylike) – A vector in R^3 or a kx3 stack of vectors.

• v2 (np.arraylike) – A second vector in R^3 or a kx3 stack of vectors. If v1 and v2 are
both stacked, they must be the same shape.

Returns A float containing the scale factor k, or nan if v1 is the zero vector. If either input is stacked,
the result will also be stacked.

Return type object

vg.orient(vector, along, reverse=False)
Given two vectors, flip the first if necessary, so that it points (approximately) along the second vector rather than
(approximately) opposite it.

Parameters

• vector (np.arraylike) – A vector in R^3.

• along (np.arraylike) – A second vector in R^3.

• reverse (bool) – When True, reverse the logic, returning a vector that points against
along.

Returns Either vector or -vector.

Return type np.arraylike

vg.almost_zero(v, atol=1e-08)
Test if v is almost the zero vector.

vg.almost_unit_length(vector, atol=1e-08)
Test if the vector has almost unit length. For stacked inputs, test each one.

Parameters vector (np.arraylike) – A 3x1 vector or a kx3 stack of vectors.

Returns For 3x1 inputs, a bool. For kx1 inputs, a kx1 array.

Return type object

vg.almost_collinear(v1, v2, atol=1e-08)
Test if v1 and v2 are almost collinear.

This will return true if either v1 or v2 is the zero vector, because mathematically speaking, the zero vector is
collinear to everything.

Geometrically that doesn’t necessarily make sense, so if you want to handle zero vectors specially, you can test
your inputs with vg.almost_zero().

vg.almost_equal(v1, v2, atol=1e-08)
Test if v1 and v2 are equal within the given absolute tolerance.

See also:

• https://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html

vg.principal_components(coords)
Compute the principal components of the input coordinates. These are useful for dimensionality reduction and
feature modeling.

Parameters coords (np.arraylike) – A nxk stack of coordinates.

Returns A kxk stack of vectors.

Return type np.ndarray

8 Chapter 2. Functions

https://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html

vg Documentation

See also:

• http://setosa.io/ev/principal-component-analysis/

• https://en.wikipedia.org/wiki/Principal_component_analysis

• https://plot.ly/ipython-notebooks/principal-component-analysis/

vg.major_axis(coords)
Compute the first principal component of the input coordinates. This is the vector which best describes the
multidimensional data using a single dimension.

Parameters coords (np.arraylike) – A nxk stack of coordinates.

Returns A kx1 vector.

Return type np.ndarray

See also:

• http://setosa.io/ev/principal-component-analysis/

• https://en.wikipedia.org/wiki/Principal_component_analysis

• https://plot.ly/ipython-notebooks/principal-component-analysis/

vg.apex(points, along)
Find the most extreme point in the direction provided.

Parameters

• points (np.arraylike) – A kx3 stack of points in R^3.

• along (np.arraylike) – A 3x1 vector specifying the direction of interest.

Returns A 3x1 point taken from points.

Return type np.ndarray

vg.nearest(from_points, to_point, ret_index=False)
Find the point nearest to the given point.

Parameters

• from_points (np.arraylike) – A kx3 stack of points in R^3.

• to_point (np.arraylike) – A 3x1 point of interest.

• ret_index (bool) – When True, return both the point and its index.

Returns A 3x1 vector taken from from_points.

Return type np.ndarray

vg.farthest(from_points, to_point, ret_index=False)
Find the point farthest from the given point.

Parameters

• from_points (np.arraylike) – A kx3 stack of points in R^3.

• to_point (np.arraylike) – A 3x1 point of interest.

• ret_index (bool) – When True, return both the point and its index.

Returns A 3x1 vector taken from from_points.

9

http://setosa.io/ev/principal-component-analysis/
https://en.wikipedia.org/wiki/Principal_component_analysis
https://plot.ly/ipython-notebooks/principal-component-analysis/
http://setosa.io/ev/principal-component-analysis/
https://en.wikipedia.org/wiki/Principal_component_analysis
https://plot.ly/ipython-notebooks/principal-component-analysis/

vg Documentation

Return type np.ndarray

vg.within(points, radius, of_point, atol=1e-08, ret_indices=False)
Select points within a given radius of a point.

Parameters

• points (np.arraylike) – A kx3 stack of points in R^3.

• radius (float) – The radius of the sphere of interest centered on of_point.

• of_point (np.arraylike) – The 3x1 point of interest.

• atol (float) – The distance tolerance. Points within radius + atol of of_point are se-
lected.

• ret_indexes (bool) – When True, return both the points and their indices.

Returns A 3x1 vector taken from points.

Return type np.ndarray

vg.average(values, weights=None, ret_sum_of_weights=False)
Compute a weighted or unweighted average of the 3D input values. The inputs could be points or vectors.

Parameters

• values (np.arraylike) – A kx3 stack of vectors.

• weights (array-convertible) – An optional k array of weights.

• ret_sum_of_weights (bool) – When True, the sum of the weights is returned. When
weights is None, this is the number of elements over which the average is taken.

Returns A (3,) vector with the weighted or unweighted average.

Return type np.ndarray

vg.cross(v1, v2)
Compute individual or pairwise cross products.

Parameters

• v1 (np.arraylike) – A 3x1 vector or a kx3 stack of vectors.

• v2 (np.arraylike) – A 3x1 vector or a kx3 stack of vectors. If stacks are provided for
both v1 and v2 they must have the same shape.

vg.dot(v1, v2)
Compute individual or pairwise dot products.

Parameters

• v1 (np.arraylike) – A 3x1 vector or a kx3 stack of vectors.

• v2 (np.arraylike) – A 3x1 vector or a kx3 stack of vectors. If stacks are provided for
both v1 and v2 they must have the same shape.

vg.matrix.pad_with_ones(matrix)

Add a column of ones. Transform from:

array([[1., 2., 3.], [2., 3., 4.], [5., 6., 7.]])

to:

array([[1., 2., 3., 1.], [2., 3., 4., 1.], [5., 6., 7., 1.]])

10 Chapter 2. Functions

vg Documentation

vg.matrix.transform(vertices, transform)
Apply the given transformation matrix to the vertices using homogenous coordinates.

vg.matrix.unpad(matrix)

Strip off a column (e.g. of ones). Transform from:

array([[1., 2., 3., 1.], [2., 3., 4., 1.], [5., 6., 7., 1.]])

to:

array([[1., 2., 3.], [2., 3., 4.], [5., 6., 7.]])

vg.shape.check(locals_namespace, name, shape)
Convenience function for invoking vg.shape.check_value() with a locals() dict.

Parameters

• namespace (dict) – A subscriptable object, typically locals().

• name (str) – Key to pull from namespace.

• shape (list) – Shape to validate. To require 3 by 1, pass (3,). To require n by 3, pass (-1,
3).

Returns The wildcard dimension (if one) or a tuple of wildcard dimensions (if more than one).

Return type object

Example

>>> def my_fun_function(points):
... vg.shape.check(locals(), 'points', (-1, 3))
... # Proceed with confidence that `points` is a k x 3 array.

Example

>>> def my_fun_function(points):
... k = vg.shape.check(locals(), 'points', (-1, 3))
... print("my_fun_function invoked with {} points".format(k))

vg.shape.check_value(a, shape, **kwargs)
Check that the given argument has the expected shape. Shape dimensions can be ints or -1 for a wildcard. The
wildcard dimensions are returned, which allows them to be used for subsequent validation or elsewhere in the
function.

Parameters

• a (np.arraylike) – An array-like input.

• shape (list) – Shape to validate. To require 3 by 1, pass (3,). To require n by 3, pass (-1,
3).

• name (str) – Variable name to embed in the error message.

Returns The wildcard dimension (if one) or a tuple of wildcard dimensions (if more than one).

Return type object

11

vg Documentation

Example

>>> vg.shape.check_value(np.zeros((4, 3)), (-1, 3))
>>> # Proceed with confidence that `points` is a k x 3 array.

Example

>>> k = vg.shape.check_value(np.zeros((4, 3)), (-1, 3))
>>> k
4

12 Chapter 2. Functions

CHAPTER 3

Constants

vg.basis
The cartesian basis vectors.

vg.basis.x = array([1., 0., 0.])

vg.basis.neg_x = array([-1., 0., 0.])

vg.basis.y = array([0., 1., 0.])

vg.basis.neg_y = array([0., -1., 0.])

vg.basis.z = array([0., 0., 1.])

vg.basis.neg_z = array([0., 0., -1.])

13

vg Documentation

14 Chapter 3. Constants

CHAPTER 4

Style guide

Use the named secondary arguments. They tend to make the code more readable:

import vg
result = vg.proj(v1, onto=v2)

15

vg Documentation

16 Chapter 4. Style guide

CHAPTER 5

Design principles

Linear algebra is useful and it doesn’t have to be dificult to use. With the power of abstractions, simple operations
can be made simple, without poring through lecture slides, textbooks, inscrutable Stack Overflow answers, or dense
NumPy docs. Code that uses linear algebra and geometric transformation should be readable like English, without
compromising efficiency.

These common operations should be abstracted for a few reasons:

1. If a developer is not programming linalg every day, they might forget the underlying formula. These forms are
easier to remember and more easily referenced.

2. These forms tend to be self-documenting in a way that the NumPy forms are not. If a developer is not program-
ming linalg every day, this will again come in handy.

3. These implementations are more robust. They automatically inspect ndim on their arguments, so they work
equally well if the argument is a vector or a stack of vectors. They are more careful about checking edge cases
like a zero norm or zero cross product and returning a correct result or raising an appropriate error.

17

vg Documentation

18 Chapter 5. Design principles

CHAPTER 6

Versioning

This library adheres to Semantic Versioning.

19

https://semver.org/

vg Documentation

20 Chapter 6. Versioning

Python Module Index

v
vg, 5
vg.matrix, 10
vg.shape, 11

21

vg Documentation

22 Python Module Index

Index

A
almost_collinear() (in module vg), 8
almost_equal() (in module vg), 8
almost_unit_length() (in module vg), 8
almost_zero() (in module vg), 8
angle() (in module vg), 6
apex() (in module vg), 9
average() (in module vg), 10

B
basis (in module vg), 13

C
check() (in module vg.shape), 11
check_value() (in module vg.shape), 11
cross() (in module vg), 10

D
dot() (in module vg), 10

E
euclidean_distance() (in module vg), 6

F
farthest() (in module vg), 9

M
magnitude() (in module vg), 6
major_axis() (in module vg), 9

N
nearest() (in module vg), 9
neg_x (in module vg.basis), 13
neg_y (in module vg.basis), 13
neg_z (in module vg.basis), 13
normalize() (in module vg), 5

O
orient() (in module vg), 8

P
pad_with_ones() (in module vg.matrix), 10
perpendicular() (in module vg), 5
principal_components() (in module vg), 8
project() (in module vg), 5

R
reject() (in module vg), 6
reject_axis() (in module vg), 6
rotate() (in module vg), 7

S
scalar_projection() (in module vg), 6
scale_factor() (in module vg), 7
signed_angle() (in module vg), 7

T
transform() (in module vg.matrix), 10

U
unpad() (in module vg.matrix), 11

V
vg (module), 5
vg.matrix (module), 10
vg.shape (module), 11

W
within() (in module vg), 10

X
x (in module vg.basis), 13

Y
y (in module vg.basis), 13

Z
z (in module vg.basis), 13

23

	Motivation
	Functions
	Constants
	Style guide
	Design principles
	Versioning
	Python Module Index
	Index

